题目内容
设x≥y≥z≥
,且x+y+z=
,求乘积cosxsinycosz的最大值和最小值.
| π |
| 12 |
| π |
| 2 |
分析:由x,y,z的大小关系,及x+y+z=
,得到x的范围,且用x表示出y+z,将所求式子后两项利用积化和差公式化简,再利用诱导公式变形,根据cosxsin(y-z)≥0,及余弦函数为减函数,利用特殊角的三角函数值化简,求出所求式子的最小值;同理将所求式子前两项结合,利用积化和差公式化简,再利用诱导公式变形,根据sin(x-y)≥0,cosz>0,及余弦函数为减函数,即可求出所求式子的最大值.
| π |
| 2 |
解答:解:∵x≥y≥z≥
,且x+y+z=
,
∴
≤x≤
-
×2=
,y+z=
-x,
∵
≤x≤
,y≥z,
∴cosxsin(y-z)≥0,
∴cosxsinycosz
=cosx×
[sin(y+z)+sin(y-z)]
=cosx×
[cosx+sin(y-z)]
=
cos2x+
cosxsin(y-z)≥
cos2x═
cos2
=
,
当y=z=
,x=
时,cosxsinycosz取得最小值,最小值为
,
∵sin(x-y)≥0,cosz>0,
∴cosxsinycosz
=cosz×
[sin(x+y)-sin(x-y)]
=
cos2z-
coszsin(x-y)≤
cos2z=
=
(1+cos
)=
,
当x=y=
,z=
时取得最大值,最大值为
.
| π |
| 12 |
| π |
| 2 |
∴
| π |
| 6 |
| π |
| 2 |
| π |
| 12 |
| π |
| 3 |
| π |
| 2 |
∵
| π |
| 6 |
| π |
| 3 |
∴cosxsin(y-z)≥0,
∴cosxsinycosz
=cosx×
| 1 |
| 2 |
=cosx×
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| π |
| 3 |
| 1 |
| 8 |
当y=z=
| π |
| 12 |
| π |
| 3 |
| 1 |
| 8 |
∵sin(x-y)≥0,cosz>0,
∴cosxsinycosz
=cosz×
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1+cos2z |
| 4 |
| 1 |
| 4 |
| π |
| 6 |
2+
| ||
| 8 |
当x=y=
| 5π |
| 12 |
| π |
| 12 |
2+
| ||
| 8 |
点评:此题考查了积化和差公式,不等式的性质,二倍角的余弦函数公式,以及诱导公式,熟练掌握公式是解本题的关键.
练习册系列答案
相关题目
(本小题12分) 在某化学实验中,测得如下表所示的6组数据,其中x(min)表示化学反应进行的时,y(mg)表示未转化物质的量
|
x(min) |
l |
2 |
3 |
4 |
5 |
6 |
|
y(mg) |
39.8 |
32.2 |
25.4 |
20.3 |
16.2 |
13.3 |
(1)设x与z之问具有关系
,试根据测量数据估计c和d的值;
(2)估计化学反应进行到10 min时未转化物质的量.