题目内容

设x≥y≥z≥
π
12
,且x+y+z=
π
2
,求乘积cosxsinycosz的最大值和最小值.
∵x≥y≥z≥
π
12
,且x+y+z=
π
2

π
6
≤x≤
π
2
-
π
12
×2=
π
3
,y+z=
π
2
-x,
π
6
≤x≤
π
3
,y≥z,
∴cosxsin(y-z)≥0,
∴cosxsinycosz
=cosx×
1
2
[sin(y+z)+sin(y-z)]
=cosx×
1
2
[cosx+sin(y-z)]
=
1
2
cos2x+
1
2
cosxsin(y-z)≥
1
2
cos2x═
1
2
cos2
π
3
=
1
8

当y=z=
π
12
,x=
π
3
时,cosxsinycosz取得最小值,最小值为
1
8

∵sin(x-y)≥0,cosz>0,
∴cosxsinycosz
=cosz×
1
2
[sin(x+y)-sin(x-y)]
=
1
2
cos2z-
1
2
coszsin(x-y)≤
1
2
cos2z=
1+cos2z
4
=
1
4
(1+cos
π
6
)=
2+
3
8

当x=y=
12
,z=
π
12
时取得最大值,最大值为
2+
3
8
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网