题目内容
(本小题满分12分)
已知函数
,
.
(Ⅰ)求函数
的最大值和最小值;
(Ⅱ)设函数
在
上的图象与
轴的交点从左到右分别为M,N,图象的最高点为P, 求向量
与
夹角的余弦值.
已知函数
(Ⅰ)求函数
(Ⅱ)设函数
解:(Ⅰ)∵
=
=
----------------------4分
∵
∴
,
∴函数
的最大值和最小值分别为2,-2.---------------6分
(Ⅱ)解法1:令
得
,
∵
∴
或
∴
--------8分
由
,且
得
∴
-------------9分
∴
,
,从而
∴
.------------------------12分
解法2:过点P作
轴于
,则
,由三角函数的性质知
-8分
,-------------------------9分
由余弦定理得
=
.--12分
解法3:过点P作
轴于
,则
由三角函数的性质知
,-8分
--------------------------9分
在
中,
--------11分
∵PA平分
∴
.----------------------------------12分
=
∵
∴函数
(Ⅱ)解法1:令
∵
由
∴
∴
解法2:过点P作
由余弦定理得
解法3:过点P作
在
∵PA平分
略
练习册系列答案
相关题目