题目内容
已知向量
=(-
,
),
=
-
,
=
+
,△AOB是以O为直角顶点的等腰直角三角形.
(1)求向量
;
(2)求△AOB的面积.
| a |
| 1 |
| 2 |
| ||
| 2 |
| OA |
| a |
| b |
| OB |
| a |
| b |
(1)求向量
| b |
(2)求△AOB的面积.
分析:(1)设
=(x,y).利用OA=OB,可得|
|=|
|=
=1.再利用|
|=|
-
|=|2
|=2,
可得|
-
|=|
+
|=
,必有
⊥
.于是
解得即可.
(2)利用S△AOB=
|
|2即可得出.
| b |
| b |
| a |
(-
|
| AB |
| OB |
| OA |
| b |
可得|
| a |
| b |
| a |
| b |
| 2 |
| a |
| b |
|
(2)利用S△AOB=
| 1 |
| 2 |
| OA |
解答:解:(1)设
=(x,y).
∵OA=OB,∴|
|=|
|=
=1,
∵|
|=|
-
|=|2
|=2,
∴|
-
|=|
+
|=
,∴
⊥
.
∴
,解得
或
.
∴
=(
,
)或(-
,-
).(
2)S△AOB=
|
|2=
×(
)2=1.
| b |
∵OA=OB,∴|
| b |
| a |
(-
|
∵|
| AB |
| OB |
| OA |
| b |
∴|
| a |
| b |
| a |
| b |
| 2 |
| a |
| b |
∴
|
|
|
∴
| b |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
2)S△AOB=
| 1 |
| 2 |
| OA |
| 1 |
| 2 |
| 2 |
点评:熟练掌握向量的运算法则和数量积运算、三角形的面积计算公式等是解题的关键.
练习册系列答案
相关题目