题目内容

设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处的切线倾斜角不大于
π
4
,则点P横坐标的取值范围是(  )
A.[-1,-
1
2
]
B.[-1,0]C.[0,1]D.(-∞,-
1
2
]
设点P的横坐标为x0
∵y=x2+2x+3,
∴y′
| x=x0
=2x0+2,
利用导数的几何意义得2x0+2=tanα(α为点P处切线的倾斜角),
又∵曲线C在点P处的切线倾斜角不大于
π
4
,0≤2x0+2≤1,
∴x0∈[-1,-
1
2
].
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网