题目内容

设P为曲线C:y=
1
3
x3-x2+x
上的点,且曲线C在点P处切线倾斜角的取值范围为[0,
π
4
]
,则点P横坐标的取值范围为
[0,2]
[0,2]
分析:根据题意知,倾斜角的取值范围,可以得到曲线C在点P处斜率的取值范围,进而得到点P横坐标的取值范围.
解答:解:设点P的横坐标为x0,∵y=
1
3
x3-x2+x
,∴y'|x=x0=x02-2x0
利用导数的几何意义得x02-2x0=tanα(α为点P处切线的倾斜角),
又∵α∈[0,
π
4
]
,∴0≤x02-2x0≤1,
∴x0∈[0,2]
故答案为:[0,2].
点评:本小题主要考查利用导数的几何意义求切线斜率问题,解题时要认真审题,仔细解答,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网