题目内容

设函数F(x)=ax3+bx2+cx(abc),其图象在x=1, x=M处的切线的斜率分别为0,-a,

(1)求证:0≤<1;

(2)若函数F(x)的递增区间为[s,t],求|s-t|的取值范围;?

(3)若当xk时,(k是与a,b,c无关的常数),恒有F′(x)+a<0,试求k的最小值.

(1)证明:f′(x)=ax2+bx+c,由题意,得f′(1)=a+b+c=0,                                      ①?

f′(M)=aM2+bM+c=-a,                                                                                 ②?

abc,得3aa+b+c3c.∴a<0,c>0.?

由①得c=-a-b,代入abc,得ab<-a-b.?

a<0得-<1.                                                                                            ?

c=-a-b代入②得,aM2+bM-b=0.                                                                     ③?

由③有实根,得Δ=b2+4AB≥0,?

即()2+4≥0.?

解得≤-4或≥0.                                                                                                 ?

综上,0≤<1.                                                                                                        ?

(2)解:由f′(x)=ax2+bx+c的判别式Δ=b2-4AC>0得f′(x)=ax2+bx+c=0有两个不等实根,?

设为x1,x2,?

f′(1)=0知x1=1是方程的根,?

x2=--1<0<x1.?

xx2xx1时,f′(x)<0;当x2xx1时,f′(x)>0.                                                 ?

∴函数f(x)的递增区间为[x2,x1].?

∴|s-T|=|x1-x2|=2+∈[2,3).                                                                            ?

(3)解:由f′(x)+a<0,即ax2+bx+c+a<0,即ax2+bx-b<0,?

a<0,∴x2+x->0.?

设g()=(x-1)·+x2对0≤<1恒成立.                                                          ?

解之,得xx.                                                                 ?

k.因此k的最小值为.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网