题目内容
现有长分别为1m、2m、3m的钢管各3根(每根钢管质地均匀、粗细相同且附有不同的编号),从中随机抽取n根(假设各钢管被抽取的可能性是均等的,1≤n≤9),再将抽取的钢管相接焊成笔直的一根.
(Ⅰ)当n=3时,记事件A={抽取的3根钢管中恰有2根长度相等},求P(A);
(Ⅱ)当n=2时,若用ξ表示新焊成的钢管的长度(焊接误差不计),
①求ξ的分布列;
②令η=-λ2ξ+λ+1,E(η)>1,求实数λ的取值范围.
(Ⅰ)当n=3时,记事件A={抽取的3根钢管中恰有2根长度相等},求P(A);
(Ⅱ)当n=2时,若用ξ表示新焊成的钢管的长度(焊接误差不计),
①求ξ的分布列;
②令η=-λ2ξ+λ+1,E(η)>1,求实数λ的取值范围.
| 查看本题解析需要登录 | |
| 查看解析 | 如何获取优点?普通用户:2个优点。 |
| 如何申请VIP用户?VIP用户:请直接登录即可查看。 | |
练习册系列答案
相关题目