搜索
题目内容
f(x)=
x+1,(当x≤1时)
-x+3,(当x>1时)
则
f[f(2)]=______.
试题答案
相关练习册答案
∵2>1,∴f(2)=-2+3=1,
∴f(1)=1+1=2.
∴f(f(2))=f(1)=2.
故答案为2.
练习册系列答案
完美假期暑假作业系列答案
快乐假期高考状元假期学习方案暑假系列答案
豫欣图书自主课堂系列答案
假期伙伴寒假大连理工大学出版社系列答案
鑫宇文化新课标快乐假期暑假系列答案
学霸错题笔记系列答案
暑假作业浙江教育出版社系列答案
学霸训练系列答案
尖子生课课练系列答案
七彩的假期生活暑假系列答案
相关题目
设函数f(x)=a
2
x
2
(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)
2
>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设
a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
设函数y=f(x)的定义域R上的奇函数,满足f(x-2)=-f(x),对一切x∈R都成立,又知当-1≤x≤1时,f(x)=x
3
,则下列四个命题
①f(x)是以4为周期的周期函数;
②f(x)在[1,3]上的解析式f(x)=(2-x)
3
;
③
f(x)在点(
3
2
,f(
3
2
))
处的切线方程为3x+4y-5=0;
④x=±1是函数f(x)图象的对称轴.
其中正确的是
.
(2013•黄埔区一模)对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”.设函数f(x)的定义域为R
+
,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(2
10
);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k(2-x),求f(x)在区间[1,2
2n
)(n∈N
*
)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“P数对”,试比较下列各组中两个式子的大小,并说明理由. ①f(2
-n
)与2
-n
+2(n∈N
*
);②f(x)与2x+2(x∈(2
-n
,2
1-n
],n∈N
*
).
已知函数
f(x)=
x
-1,x>0
2
-|x|
+1,x≤0.
若关于x的方程f(x)+2x-k=0有且只有两个不同的实根,则实数k的取值范围为( )
A.(-1,2]
B.(-∞,1]∪(2,+∞)
C.(0,1]
D.[1,+∞)
设函数f(x)=a
2
x
2
(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
2
,求a的值;
(2)关于x的不等式(x-1)
2
>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设
a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案