题目内容

8.An(n∈N)系列的纸张规格如图,其特色在于:
①A0,A1,A2,…,An所有规格的纸张的长宽比都相同;
②A0对裁后可以得到两张A1,A1对裁后可以得到两张A2,…,An-1对裁后可以得到两张An
现有每平方厘米重量为b克的A0,A1,A2,…,An纸各一张,若A4纸的宽度为a厘米,则这(n+1)张纸的重量之和Sn+1等于$32\sqrt{2}{a^2}b[{1-{{(\frac{1}{2})}^{n+1}}}]$.(单位:克)

分析 由题意可得面积是逐渐变为上一个的一半,由相似可得x:y=$\sqrt{2}$:1,由此能求出这(n+1)张纸的重量之和Sn+1

解答 解:由题意可得面积是逐渐变为上一个的一半,设An的长、宽分别为x,y,则An+1的长、宽分别为y,$\frac{1}{2}$x,
由相似可得x:y=$\sqrt{2}$:1,
故A4的面积为$\sqrt{2}$a2,A1的面积为8$\sqrt{2}$a2,A0的面积为16$\sqrt{2}{a}^{2}$,
所以Sn+1=$\frac{8\sqrt{2}{a}^{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}•b$+16$\sqrt{2}{a}^{2}b$
=16$\sqrt{2}$a2b(2-$\frac{1}{{2}^{n}}$)
=$32\sqrt{2}{a^2}b[{1-{{(\frac{1}{2})}^{n+1}}}]$.
故答案为:$32\sqrt{2}{a^2}b[{1-{{(\frac{1}{2})}^{n+1}}}]$.

点评 本题考查等比数列的求和,归纳推理,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网