搜索
题目内容
已知圆O的内接△ABC中,D为BC上一点,且△ADC为正三角形,点E为BC的延长线上一
点,AE为圆O的切线,求证:CD
2
=BD·EC.
试题答案
相关练习册答案
详见解析
试题分析:根据圆的几何性质有:
为圆
的切线,所以
,又由
为等边三角形,所以
,由相似三角形的条件可得
,可得:
,即
,再由
,即可得
.
试题解析:因为
为圆
的切线,所以
. 2分
因为
为等边三角形,所以
,
所以
所以
. 6分
所以
,即
. 8分
因为
为等边三角形,所以
,
所以
. 10分
练习册系列答案
1加1阅读好卷系列答案
专项复习训练系列答案
初中语文教与学阅读系列答案
阅读快车系列答案
完形填空与阅读理解周秘计划系列答案
英语阅读理解150篇系列答案
奔腾英语系列答案
标准阅读系列答案
53English系列答案
考纲强化阅读系列答案
相关题目
如图,AB为⊙O的直径,直线CD与⊙O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,连结AE,BE.证明:
(1)∠FEB=∠CEB;
(2)EF
2
=AD·BC.
如图,在四边形ABCD中,△ABC≌△BAD.求证:AB∥CD.
如图,锐角三角形ABC的高CD和高BE相交于O,则与△DOB相似的三角形个数是( )
A.1
B.2
C.3
D.4
如图是某高速公路一个隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面AB=10m,净高CD=7m,则此圆的半径OA=________m.
已知平面α∥平面β,P是α、β外一点,过点P的直线m分别与α、β交于A、C,过点P的直线n分别与α、β交于B、D,且PA=6,AC=9,PD=8.则BD的长为( )
A.
B.
C.
D.
或
如图,正三角形ABC外接圆的半径为1,点M、N分别是边AB、AC的中点,延长MN与△ABC的外接圆交于点P,求线段NP的长.
如图,圆O的直径AB=2
,C是圆O外一点,AC交圆O于点E,BC交圆O于点D,已知AC=AB,BC=4,求△ADE的周长.
如图所示,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆O的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,则线段AE的长为
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案