题目内容
已知a>0,则(a
+a-
)2-(a
-a-
)2=( )
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
分析:利用平方差公式,可将原式化为(a
+a-
+a
-a-
) •(a
+a-
-a
+a-
) ,进而根据am•a-m=1得到答案.
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
解答:解:(a
+a-
)2-(a
-a-
)2
=(a
+a-
+a
-a-
) •(a
+a-
-a
+a-
)
=2a
•2a-
=4
故选B
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
=(a
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
=2a
| 1 |
| 3 |
| 1 |
| 3 |
故选B
点评:本题考查的知识点是有理数指数幂的化简求值,熟练掌握平方差公式,及am•a-m=1是解答的关键.
练习册系列答案
相关题目