题目内容
已知{an}、{bn}都是等差数列,其前n项和分别为Sn、Tn,若| Sn |
| Tn |
| 3n+19 |
| n+1 |
| an |
| bn |
分析:先根据
求得
的值,进而根据=
=
求得
的表达式,进而整理求得要使其为正整数n的值,进而可知当n=8时期值最小.
| Sn |
| Tn |
| S2n-1 |
| T2n-1 |
| a2n-1+a1 |
| b2n-1+b1 |
| an |
| bn |
| an |
| bn |
解答:解:∵
=
,
所以
=
=
又
=
=
∴
=
=3+
只有n=1,2,4,8
才为正整数.
∴使
取得最小正整数的n=8
故答案为8.
| Sn |
| Tn |
| 3n+19 |
| n+1 |
所以
| S2n-1 |
| T2n-1 |
| 3(2n-1)+19 |
| 2n-1+1 |
| 6n+16 |
| 2n |
又
| S2n-1 |
| T2n-1 |
| a2n-1+a1 |
| b2n-1+b1 |
| an |
| bn |
∴
| an |
| bn |
| 6n+16 |
| 2n |
| 8 |
| n |
只有n=1,2,4,8
| an |
| bn |
∴使
| an |
| bn |
故答案为8.
点评:本题主要了等差数列的通项公式和求和公式的应用.考查了学生创造性解决问题的能力.
练习册系列答案
相关题目