ÌâÄ¿ÄÚÈÝ
14£®ÒÑÖªÔ²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+\sqrt{2}cos¦Õ}\\{y=1+\sqrt{2}sin¦Õ}\end{array}\right.$£¬£¨¦ÕΪ²ÎÊý£©£¬Ö±ÏßlµÄ·½³ÌÊÇx+y-a=0£¬ÒÔ×ø±êÔµãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®£¨1£©ÇóÔ²CÓëÖ±ÏßlµÄ¼«×ø±ê·½³ÌÒÔ¼°Ô²ÐÄCµÄ¼«×ø±ê£»
£¨2£©ÒÑÖªÔ²CºÍÖ±ÏßlÏཻÓÚA£¬BÁ½µã£¬Èô¡÷AOBÊǵȱßÈý½ÇÐΣ¬ÇóʵÊýaµÄÖµ£®
·ÖÎö £¨1£©°ÑÔ²CµÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬ÔÙ°ÑÆÕͨ·½³Ì»¯Îª¼«×ø±ê·½³Ì£¬
°ÑÖ±ÏßlµÄÆÕͨ·½³Ì»¯Îª¼«×ø±ê·½³Ì£»
£¨2£©ÀûÓÃÔ²CºÍÖ±ÏßlµÄÆÕͨ·½³ÌÁªÁ¢£¬ÏûÈ¥y£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµÇó³ö|AB|¡¢|OA|£¬
ÓÉ¡÷AOBÊǵȱßÈý½ÇÐΣ¬µÃ|AB|=|OA|£¬Çó³öaµÄÖµ£®
½â´ð ½â£º£¨1£©°ÑÔ²CµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=1+\sqrt{2}cos¦Õ}\\{y=1+\sqrt{2}sin¦Õ}\end{array}\right.$£¬£¨¦ÕΪ²ÎÊý£©
»¯ÎªÆÕͨ·½³ÌÊÇ£¨x-1£©2+£¨y-1£©2=2£¬
ÔÙ»¯Îª¼«×ø±ê·½³ÌÊÇ£¨¦Ñcos¦È-1£©2+£¨¦Ñsin¦È-1£©2=2£¬
¼´¦Ñ=0£¨ÉáÈ¥£©£¬¦Ñ=2sin¦È+2cos¦È£»
Ô²ÐÄ×ø±êÊÇ£¨1£¬1£©£¬
Ô²Ðĵļ«×ø±êÊÇ£¨$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©£»
°ÑÖ±ÏßlµÄ·½³Ìx+y-a=0»¯Îª¼«×ø±ê·½³ÌÊÇ
¦Ñcos¦È+¦Ñsin-a=0£¬
¼´¦Ñ=$\frac{a}{sin¦È+cos¦È}$£»
£¨2£©Ô²C£º£¨x-1£©2+£¨y-1£©2=2£¬ºÍÖ±Ïßl£ºx+y-a=0ÏཻÓÚA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©Á½µã£¬
¼´$\left\{\begin{array}{l}{x+y-a=0}\\{{£¨x-1£©}^{2}{+£¨y-1£©}^{2}=2}\end{array}\right.$£¬
ÏûÈ¥y£¬µÃ2x2-2ax+a2-2a=0£»
¡àx1+x2=a£¬x1x2=$\frac{{a}^{2}-2a}{2}$£¬
¡à|AB|=$\sqrt{1{+k}^{2}}$•$\sqrt{{{£¨x}_{1}{+x}_{2}£©}^{2}-{{4x}_{1}x}_{2}}$=$\sqrt{2}$•$\sqrt{{a}^{2}-4¡Á\frac{{a}^{2}-2a}{2}}$=$\sqrt{2}$•$\sqrt{4a{-a}^{2}}$£¬
ÓÉ${{£¨x}_{1}-1£©}^{2}$+${{£¨y}_{1}-1£©}^{2}$=2£¬
µÃ${{x}_{1}}^{2}$+${{y}_{1}}^{2}$=2£¨x1+y1£©£¬
ÓÖx1+y1-a=0£¬
¡à|OA|=$\sqrt{{{x}_{1}}^{2}{{+y}_{1}}^{2}}$=$\sqrt{2{£¨x}_{1}{+y}_{1}£©}$=$\sqrt{2}$•$\sqrt{a}$£»
ÓÖ¡÷AOBÊǵȱßÈý½ÇÐΣ¬¡à|AB|=|OA|£¬
¼´$\sqrt{2}$•$\sqrt{4a{-a}^{2}}$=$\sqrt{2}$•$\sqrt{a}$£¬
½âµÃa=0£¨²»ºÏÌâÒ⣬ÉáÈ¥£©»òa=3£»
¡àʵÊýaµÄֵΪ3£®
µãÆÀ ±¾Ì⿼²éÁËÖ±ÏßÓëÔ²µÄ·½³ÌµÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁ˲ÎÊý·½³ÌÓë¼«×ø±êµÄÓ¦ÓÃÎÊÌ⣬ÊÇ×ÛºÏÐÔÌâÄ¿£®
| A£® | $\frac{2015}{2016}$ | B£® | $\frac{4028}{2015}$ | C£® | $\frac{2015}{1008}$ | D£® | $\frac{1007}{1008}$ |
| A£® | A¡ÈBÊDZØÈ»Ê¼þ | B£® | $\overline{A}$¡È$\overline{B}$ÊDZØÈ»Ê¼þ | C£® | $\overline{A}$Óë$\overline{B}$Ò»¶¨»¥³â | D£® | $\overline{A}$Óë$\overline{B}$Ò»¶¨²»»¥³â |