题目内容

若函数f(x)=2x2-lnx在其定义域的一个子区间(k-1,k+1)内不是单调函数,则实数k的取值范围是(  )
A.k>
3
2
B.k<-
1
2
C.-
1
2
<k<
3
2
D.1≤k<
3
2
求导函数,f′(x)=4x-
1
x

当k=1时,(k-1,k+1)为(0,2),函数在(0,
1
2
)
上单调减,在(
1
2
,2)
上单调增,满足题意;
当k≠1时,∵函数f(x)=2x2-lnx在其定义域的一个子区间(k-1,k+1)内不是单调函数
∴f′(x)在其定义域的一个子区间(k-1,k+1)内有正也有负
∴f′(k-1)f′(k+1)<0
(4k-4-
1
k-1
)(4k+4-
1
k+1
)<0

4k2-8k+3
k-1
×
4k2+8k+3
k+1
<0
(2k-3)(2k-1)(2k+3)(2k+1)
(k-1)(k+1)
<0

∵k-1>0
∴k+1>0,2k+1>0,2k+3>0,
∴(2k-3)(2k-1)><0,解得1<k<
3
2

综上知,1≤k<
3
2

故选D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网