题目内容
分析:分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a,根据抛物线定义可知|BD|=a,进而推断出∠BCD的值,在直角三角形中求得a,进而根据BD∥FG,利用比例线段的性质可求得p,则抛物线方程可得.
解答:
解:如图分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a,则由已知得:|BC|=2a,由定义得:|BD|=a,故∠BCD=30°,
在直角三角形ACE中,∵|AE|=3,|AC|=3+3a,
∴2|AE|=|AC|
∴3+3a=6,
从而得a=1,
∵BD∥FG,
∴
=
求得p=
,
因此抛物线方程为y2=3x.
故选C.
在直角三角形ACE中,∵|AE|=3,|AC|=3+3a,
∴2|AE|=|AC|
∴3+3a=6,
从而得a=1,
∵BD∥FG,
∴
| 1 |
| p |
| 2 |
| 3 |
| 3 |
| 2 |
因此抛物线方程为y2=3x.
故选C.
点评:本题主要考查了抛物线的标准方程.考查了学生对抛物线的定义和基本知识的综合把握.
练习册系列答案
相关题目