题目内容
已知向量
=(
cos(α+β),
sin(α+β)),
=(-sinβ,cosβ),若向量
与
的夹角为
,且α∈(
,2π),求cos(2α+
)的值.
| a |
| 2 |
| 2 |
| b |
| a |
| b |
| 5π |
| 6 |
| 3π |
| 2 |
| π |
| 4 |
∵|
|=
,|
|=1,cos
=-
=
=
=sinα,∴sinα=-
.又α∈(
,2π),∴α=
. cos2α=2cos2α-1=-
,
sin2α=2sinα cosα=-
,
∴cos(2α+
)=cos2αcos
-sin2αsin
=-
×
+
×
=
.
| a |
| 2 |
| b |
| 5π |
| 6 |
| ||
| 2 |
| ||||
|
|
-
| ||||
|
=sinα,∴sinα=-
| ||
| 2 |
| 3π |
| 2 |
| 5π |
| 3 |
| 1 |
| 2 |
sin2α=2sinα cosα=-
| ||
| 2 |
∴cos(2α+
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| 1 |
| 2 |
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
| ||||
| 4 |
练习册系列答案
相关题目