题目内容
已知f(n)满足f2(n)=f(n-1)f(n+1)(n>1,n∈N*),若f(1)=1,f(2)=2,则f(6)=分析:由题意可得,
=
则
=
=
=
=
=2,从而可求
| f(n+1) |
| f(n) |
| f(n) |
| f(n-1) |
| f(6) |
| f(5) |
| f(5) |
| f(4) |
| f(4) |
| f(3) |
| f(3) |
| f(2) |
| f(2) |
| f(1) |
解答:解:因为f2(n)=f(n-1)f(n+1)
所以
=
=
=
=
=
=2
∴f(3)=2f(2)=4,f(4)=2f(3)=8,f(5)=2f(4)=16,f(6)=2f(5)=32
故答案为:32
所以
| f(n+1) |
| f(n) |
| f(n) |
| f(n-1) |
| f(6) |
| f(5) |
| f(5) |
| f(4) |
| f(4) |
| f(3) |
| f(3) |
| f(2) |
| f(2) |
| f(1) |
∴f(3)=2f(2)=4,f(4)=2f(3)=8,f(5)=2f(4)=16,f(6)=2f(5)=32
故答案为:32
点评:本题主要考查了由递推关系求解函数的值,解题的关键是根据已知递推关系转化为
=
,从而进行求解.
| f(n+1) |
| f(n) |
| f(n) |
| f(n-1) |
练习册系列答案
相关题目