题目内容
已知函数f(x)=x2-ax+3在(0,1)上为减函数,函数g(x)=x2-alnx在(1,2)上为增函数,则a的值等于
- A.1
- B.2
- C.0
- D.

B
分析:先求出二次函数f(x)图象的对称轴,由区间(0,1)在对称轴的左侧,列出不等式解出a的取值范围.再利用函数g(x)单调,其导函数大于等于0或小于等于0恒成立,得到二次不等式恒成立,即最小值≥0恒成立.两者结合即可得到答案.
解答:函数f(x)=x2-ax+3的对称轴为x=
a,
∵函数f(x)=x2-ax+3在(0,1)上为减函数,且开口向上,∴
a≥1,得出a≥2.
∵
,
若函数g(x)=x2-alnx在(1,2)上为增函数,则只能f′(x)≥0在(1,2)上恒成立,
即2x2-a≥0在(1,2)上恒成立恒成立,
a≤2x2,故只要a≤2.
综上所述,a=2.
故选B.
点评:本题考查了二次函数的单调性,先求出对称轴方程,根据图象的开口方向,再进行求解,考查利用导数研究函数的单调性、函数单调性求参数范围,属于基础题.
分析:先求出二次函数f(x)图象的对称轴,由区间(0,1)在对称轴的左侧,列出不等式解出a的取值范围.再利用函数g(x)单调,其导函数大于等于0或小于等于0恒成立,得到二次不等式恒成立,即最小值≥0恒成立.两者结合即可得到答案.
解答:函数f(x)=x2-ax+3的对称轴为x=
∵函数f(x)=x2-ax+3在(0,1)上为减函数,且开口向上,∴
∵
若函数g(x)=x2-alnx在(1,2)上为增函数,则只能f′(x)≥0在(1,2)上恒成立,
即2x2-a≥0在(1,2)上恒成立恒成立,
a≤2x2,故只要a≤2.
综上所述,a=2.
故选B.
点评:本题考查了二次函数的单调性,先求出对称轴方程,根据图象的开口方向,再进行求解,考查利用导数研究函数的单调性、函数单调性求参数范围,属于基础题.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|