题目内容

已知正方形ABCD,E、F分别是AB、CD的中点,将△ADE沿DE折起,如图所示,记二面角A-DE-C的大小为θ(0<θ<π).

(1)证明BF∥平面ADE;

(2)若△ACD为正三角形,试判断点A在平面BC?DE内的射影G是否在直线EF上,证明你的结论,并求角θ的余弦值.

 (1)证明:E、F分别是正方体ABCD的边AB、CD的中点.

∴EB∥FD,且EB=FD.

∴四边形EBFD是平行四边形.

∴BF∥ED.

∵ED平面AED,而BF平面AED.

∴BF∥平面AED.   

(2)点A在平面BCDE内的射影G在直线EF上.

过点A作AG⊥平面BCDE,垂足为G,连结GC、GD.

∵△ACD为正三角形.

∴AC=AD,∴GC=GD.

∴G在CD的垂直平分线上.

又∵EF是CD的垂直平分线,∴点A在平面BCDE内的射影G在直线EF上.   

过G作GH⊥ED.垂足为H.连结AH,则AH⊥DE,∴∠AHG是二面角A-DE-C的平面角.即∠AHG=θ.

设原正方形ABCD的边长为2a,连结AF.

在折后图的△AEF中,AF=a,EF=2AE=2a,

∴△AEF为直角三角形,AG·EF=AE·AF.

∴AG=.

在Rt△ADE中,AH·DE=AD·AE.

∴AH=.∴GH=.

∴cosθ=.   


解析:

空间直线和平面

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网