题目内容
在正三棱柱ABC-A1B1C1中,已知AB=1,点D在棱BB1上,且BD=1,则AD与平面AA1CC1所成角的正切值为
- A.

- B.1
- C.

- D.

D
分析:根据题意画出图形,过B作BF⊥AC,过B1作B1E⊥A1C1,连接EF,过D作DG⊥EF,连接AG,证明DG⊥面AA1C1C,∠DAG=α,解直角三角形ADG即可.
解答:
解:如图所示,过B作BF⊥AC,过B1作B1E⊥A1C1,连接EF,过D作DG⊥EF,连接AG,
在正三棱柱中,有B1E⊥面AA1C1C,BF⊥面AA1C1C,
故DG⊥面AA1C1C,
∴∠DAG=α,可求得DG=BF=
,
AG=
,
故tanα=
故选D.
点评:考查直线和平面所成的角,关键是找到斜线在平面内的射影,把空间角转化为平面角求解,属基础题.
分析:根据题意画出图形,过B作BF⊥AC,过B1作B1E⊥A1C1,连接EF,过D作DG⊥EF,连接AG,证明DG⊥面AA1C1C,∠DAG=α,解直角三角形ADG即可.
解答:
在正三棱柱中,有B1E⊥面AA1C1C,BF⊥面AA1C1C,
故DG⊥面AA1C1C,
∴∠DAG=α,可求得DG=BF=
AG=
故tanα=
故选D.
点评:考查直线和平面所成的角,关键是找到斜线在平面内的射影,把空间角转化为平面角求解,属基础题.
练习册系列答案
相关题目