题目内容
单调增区间为
- A.

- B.

- C.

- D.
其中k∈Z
D
分析:将y=2sin(
-2x)转化为y=-2sin(2x-
),利用正弦函数的单调性即可求得答案.
解答:∵y=2sin(
-2x)=-2sin(2x-
),
∴y=2sin(
-2x)的单调增区间即为y=2sin(2x-
)的递减区间,
由2kπ+
≤2x-
≤2kπ+
(k∈Z)得:
kπ+
≤x≤kπ+
(k∈Z),
即y=2sin(
-2x)的单调增区间为[kπ+
,kπ+
](k∈Z),
故选D.
点评:本题考查正弦函数的单调性,将y=2sin(
-2x)转化为y=-2sin(2x-
)再利用正弦函数的单调性分析是关键,也是易错之处,属于中档题.
分析:将y=2sin(
解答:∵y=2sin(
∴y=2sin(
由2kπ+
kπ+
即y=2sin(
故选D.
点评:本题考查正弦函数的单调性,将y=2sin(
练习册系列答案
相关题目