题目内容
在数列{an}中,已知a1=2,an+1=
(n∈N*).
(1)求a2,a3的值;
(2)证明数列{
-1}为等比数列,并求数列{an}的通项公式;
(3)求证:a1(a1-1)+a2(a2-1)+…+an(an-1)<3.
| 2an |
| an+1 |
(1)求a2,a3的值;
(2)证明数列{
| 1 |
| an |
(3)求证:a1(a1-1)+a2(a2-1)+…+an(an-1)<3.
分析:(1)将n=1代入an+1=
(n∈N*)可求出的a2值,然后将n=2代入可求出a3的值;
(2)将an+1=
变形得
=
•
+
⇒
-1=
(
-1),从而可知数列{
-1}为等比数列,其首项为-
,公比为
,从而求出数列的通项公式;
(3)当n≥2时,an(an-1)=
<
=
=
-
,从而可证得a1(a1-1)+a2(a2-1)+…+an(an-1)<2+1-
=3-
<3.
| 2an |
| an+1 |
(2)将an+1=
| 2an |
| an+1 |
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| an |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
(3)当n≥2时,an(an-1)=
| 2n |
| (2n-1)2 |
| 2n |
| (2n-1)(2n-2) |
| 2n-1 |
| (2n-1-1)(2n-1) |
| 1 |
| 2n-1-1 |
| 1 |
| 2n-1 |
| 1 |
| 2n-1 |
| 1 |
| 2n-1 |
解答:解:(1)a2=
,a3=
…(2分)
(2)由a1=2,an+1=
得:
=
•
+
⇒
-1=
(
-1)∵a1=2,
-1=-
∴
=
所以数列{
-1}为等比数列,其首项为-
,公比为
…(6分)
所以
-1=-
•(
)n-1=-(
)n⇒an=
即为数列的通项公式.…(9分)
(3)证明:an=
⇒an(an-1)=
当n≥2时,an(an-1)=
<
=
=
-
⇒a1(a1-1)+a2(a2-1)+…+an(an-1)=
+
+…+
<
+(
-
)+(
-
)+…+(
-
)=2+1-
=3-
<3
所以原不等式成立.…(12分)
| 4 |
| 3 |
| 8 |
| 7 |
(2)由a1=2,an+1=
| 2an |
| an+1 |
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| 2 |
| ||
|
| 1 |
| 2 |
所以数列{
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
所以
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 2n |
| 2n-1 |
(3)证明:an=
| 2n |
| 2n-1 |
| 2n |
| (2n-1)2 |
当n≥2时,an(an-1)=
| 2n |
| (2n-1)2 |
| 2n |
| (2n-1)(2n-2) |
| 2n-1 |
| (2n-1-1)(2n-1) |
| 1 |
| 2n-1-1 |
| 1 |
| 2n-1 |
| 2 |
| (2-1)2 |
| 22 |
| (22-1)2 |
| 2n |
| (2n-1)2 |
| 2 |
| (2-1)2 |
| 1 |
| 2-1 |
| 1 |
| 22-1 |
| 1 |
| 22-1 |
| 1 |
| 23-1 |
| 1 |
| 2n-1-1 |
| 1 |
| 2n-1 |
| 1 |
| 2n-1 |
| 1 |
| 2n-1 |
所以原不等式成立.…(12分)
点评:本题主要考查了数列与不等式的综合,以及数列的递推关系,同时考查了计算能力,属于中档题.
练习册系列答案
相关题目