题目内容

19.已知数列{an}满足a1=1,an+1=an2+an,用[x]表示不超过x的最大整数,则[$\frac{1}{{a}_{1}+1}$+$\frac{1}{{a}_{2}+1}$+…+$\frac{1}{{a}_{2015}+1}$]=0.

分析 通过对an+1=an2+an两边同时取倒数、整理可知$\frac{1}{1+{a}_{n}}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$,并项相加得$\frac{1}{{a}_{1}+1}$+$\frac{1}{{a}_{2}+1}$+…+$\frac{1}{{a}_{2015}+1}$=$\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{2016}}$,利用an+1>an>1及取整函数即得结论.

解答 解:对an+1=an2+an两边同时取倒数,得:
$\frac{1}{{a}_{n+1}}$=$\frac{1}{{a}_{n}(1+{a}_{n})}$=$\frac{1}{{a}_{n}}$-$\frac{1}{1+{a}_{n}}$,
∴$\frac{1}{1+{a}_{n}}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$,
∴$\frac{1}{{a}_{1}+1}$+$\frac{1}{{a}_{2}+1}$+…+$\frac{1}{{a}_{2015}+1}$
=$\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{2}}$-$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{2015}}$-$\frac{1}{{a}_{2016}}$
=$\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{2016}}$,
∵an+1=an2+an,a1=1,
∴an+1>an>1,
∴0<$\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{2016}}$<1,
∴[$\frac{1}{{a}_{1}+1}$+$\frac{1}{{a}_{2}+1}$+…+$\frac{1}{{a}_{2015}+1}$]=0,
故答案为:0.

点评 本题考查数列的通项,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网