搜索
题目内容
已知函数
,判断
在
处是否可导?
试题答案
相关练习册答案
不可导
解析:
∴
在
处不可导.
练习册系列答案
轻松暑假总复习系列答案
书屯文化期末暑假期末冲刺假期作业云南人民出版社系列答案
暑假作业安徽人民出版社系列答案
阳光假日暑假系列答案
优佳学案暑假活动系列答案
赢在课堂激活思维系列答案
金考卷单元专项期中期末系列答案
步步高大一轮复习讲义系列答案
毕业生暑期必读系列答案
名师金手指暑假生活系列答案
相关题目
已知函数f(x)=2x
2
+ax,g(x)=lnx,F(x)=f(x)+g(x).
(Ⅰ)若F(x)在x=1处取得极小值,求F(x)的极大值;
(Ⅱ)若F(x)在区间
(0,
1
4
)
上是增函数,求实数a的取值范围;
(Ⅲ)若a=3,问是否存在与曲线y=f(x)和y=g(x)都相切的直线?若存在,判断有几条?并加以证明,若不存在,说明理由.
已知函数f(x)=(k
2
-klnx)e
x
(y为非零常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(1)判断f(x)的单调性;
(2)若f(x)≥(1+a)x-e
x
lnx+b(b>0),求(a+1)b的最大值.
(2012•杭州二模)已知函数
f(x)=a
x
3
+
1
2
x
2
在x=-1处取得极大值,记g(x)
1
f′(x)
.某程序框图如图所示,若输出的结果S>
2011
2012
,则判断框中可以填入的关于n的判断条件是( )
A.n≤2011?
B.n≤2012?
C.n>2011?
D.n>2012?
已知函数f(x)=
-
x
2
+x,(x≤1)
lnx,(x>1)
,
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)设P(x
1
,y
1
),Q(x
2
,y
2
)是函数f(x)图象上的两点且x
1
<1,x
2
>1,若直线PQ是函数f(x)图象的切线且P、Q都是切点,求证:3<x
2
<4;(参考数据:ln2≈0.6931,ln3≈1.0986)
(Ⅲ)设函数g(x)的定义域为D,区间I⊆D,若函数g(x)在I上可导,对任意的x
0
∈I,g(x)的图象在(x
0
,g(x
0
))处的切线为l,函数g(x)图象上所有的点都在直线l上方或直线l上,则称区间I为函数g(x)的“下线区间”.类比上面的定义,请你写出函数“上线区间”的定义,并根据你所给的定义,判断区间(-∞,
3
8
)是否是函数f(x)的“上线区间”(不必证明).
(2012•三明模拟)已知函数f(x)的导函数是f′(x)=3x
2
+2mx+9,f(x)在x=3处取得极值,且f(0)=0.
(Ⅰ)求f(x)的极大值和极小值;
(Ⅱ)记f(x)在闭区间[0,t]上的最大值为F(t),若对任意的t(0<t≤4)总有F(t)≥λt成立,求λ的取值范围;
(Ⅲ)设M(x,y)是曲线y=f(x)上的任意一点.当x∈(0,1]时,求直线OM斜率的最小值,据此判断f(x)与4sinx的大小关系,并说明理由.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案