题目内容
已知数列{an}中,a1=2,a2=10,对任意n∈N*有an+2=2an+1+3an成立.
(I)若{an+1+λan}是等比数列,求λ的值;
(II)求数列{an}的通项公式;
(III)证明:
+
+
+…+
<
对任意n∈N*成立.
(I)若{an+1+λan}是等比数列,求λ的值;
(II)求数列{an}的通项公式;
(III)证明:
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 2 |
| 3 |
分析:(I)根据{an+1+λan}是等比数列,可设an+2+λan+1=μ(an+1+λan),拆开与an+2=2an+1+3an比较建立方程组,解之即可求出所求;
(II)根据(I)可分别求出{an+1+an}与{an+2-3an+1}的通项公式,将两通项公式相加即可求出所求;
(III)讨论n的奇偶,然后利用放缩法进行证明不等式即可.
(II)根据(I)可分别求出{an+1+an}与{an+2-3an+1}的通项公式,将两通项公式相加即可求出所求;
(III)讨论n的奇偶,然后利用放缩法进行证明不等式即可.
解答:(I)解:设an+2+λan+1=μ(an+1+λan),则an+2=(μ-λ)an+1+λμan,
令
,得
或者
,即λ=1或λ=-3;
(II)解:由(I)知 an+2+an+1=3(an+1+an),而a2+a1=12,
故an+1+an=(a2+a1)•3n-1=12•3n-1=4•3n,①
同理an+2-3an+1=-(an+1-3an)有an+1-3an=(a2-3a1)•(-1)n-1=4•(-1)n-1,②
①-②得 4an=4•3n-4•(-1)n-1,即an=3n+(-1)n.
(III)证明:当n=2k(k∈N*)时,注意到32k+1-32k-1=2•32k-1>0,于是
+
=
+
=
+
=
=
<
=
+
.
显然当n=1时,不等式成立;对于n≥2,
当n为奇数时,
+
+
+…+
=
+(
+
)+…+(
+
)=
+
+
+…+
+
=
+
×
(1-
)=
+
(1-
)<
+
=
;
当n为偶数时,
+
+
+…+
<
+
+
+…+
+
=
+
+
+…+
+
=
+
×
(1-
)=
+
(1-
)<
+
=
.
综上 对任意n∈N*有
+
+
+…+
<
成立.
令
|
|
|
(II)解:由(I)知 an+2+an+1=3(an+1+an),而a2+a1=12,
故an+1+an=(a2+a1)•3n-1=12•3n-1=4•3n,①
同理an+2-3an+1=-(an+1-3an)有an+1-3an=(a2-3a1)•(-1)n-1=4•(-1)n-1,②
①-②得 4an=4•3n-4•(-1)n-1,即an=3n+(-1)n.
(III)证明:当n=2k(k∈N*)时,注意到32k+1-32k-1=2•32k-1>0,于是
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| a2k |
| 1 |
| a2k+1 |
| 1 |
| 32k+1 |
| 1 |
| 32k+1-1 |
| 32k+1+32k |
| (32k+1)(32k+1-1) |
| 32k+1+32k |
| 32k•32k+1+32k+1-32k-1 |
| 32k+1+32k |
| 32k•32k+1 |
| 1 |
| 32k |
| 1 |
| 32k+1 |
显然当n=1时,不等式成立;对于n≥2,
当n为奇数时,
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an-1 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n-1 |
| 1 |
| 3n |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 32 |
| 1 |
| 3n-1 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 3n-1 |
| 1 |
| 2 |
| 1 |
| 6 |
| 2 |
| 3 |
当n为偶数时,
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n |
| 1 |
| 3n+1 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 32 |
| 1 |
| 3n |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 3n |
| 1 |
| 2 |
| 1 |
| 6 |
| 2 |
| 3 |
综上 对任意n∈N*有
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 2 |
| 3 |
点评:本题主要考查了数列的通项公式,以及数列与不等式的综合,同时考查了计算能力和利用放缩法证明不等式,属于难题.
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|