题目内容
11.分析 根据四棱锥的俯视图得到四棱锥的特征,根据四棱锥的左视图为直角三角形,得到四棱锥的高即可求出它的体积.
解答
解:由四棱锥的俯视图可知,该四棱锥底面为ABCD为正方形,PO垂直于BC于点O,其中O为BC的中点,
若该四棱锥的左视图为直角三角形,
则△BPC为直角三角形,且为等腰直角三角形,
所以直角三角形有3个.
∵B0=1,
∴PO=BO=1,
则它的体积为V=$\frac{1}{3}$×22×1=$\frac{4}{3}$.
故答案为:3;$\frac{4}{3}$.
点评 本题主要考查三视图的识别和应用以及锥体的体积的计算,考查线面垂直和面面垂直的判断,考查学生的推理能力.
练习册系列答案
相关题目
16.已知直线m:x+2y-3=0,函数y=3x+cosx的图象与直线l相切于P点,若l⊥m,则P点的坐标可能是( )
| A. | (-$\frac{π}{2}$,-$\frac{3π}{2}$) | B. | ($\frac{π}{2}$,$\frac{3π}{2}$) | C. | ($\frac{3π}{2}$,$\frac{π}{2}$) | D. | (-$\frac{3π}{2}$,-$\frac{π}{2}$) |
3.曲线y=ex+3在(0,4)处的切线方程为( )
| A. | 2x+y-4=0 | B. | 2x-y+4=0 | C. | x-y+4=0 | D. | x+y-4=0 |