题目内容

R上的减函数f(x)满足当且仅当x∈MR+时,值域为[0,2],且f()=1,又对M中的任意x1、x2都有f(x1x2)=f(x1)+f(x2),

(1)证明f-1(x1)f-1(x2)=f-1(x1+x2);

(2)解不等式f-1(x2+x)f-1(x+2)≤(0≤x≤2).

(1)证明:任取x1、x2∈[0,2],且设y1=f-1(x1),y2=f-1(x2x1=f(y1),x2=

f(y2),

则x1+x2=f(y1)+f(y2)=f(y1y2y1y2f-1(x1+x2).

又y1y2=f-1(x1)f-1(x2),

所以f-1(x1)f-1(x2)=f-1(x1+x2)成立.

(2)解:f(x)为减函数,则f-1(x)也为减函数.因f()=f(×)=f()+f()=2,

则f-1(x2+x)f-1(x+2)≤

*f-1(x2+2x+2)≤f-1(2)

x=0或x=-2.

又由已知条件0≤x≤2,得x=0.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网