题目内容
若直线ax+by=1与圆 x2+y2=1相交,则P(a,b)
- A.在圆上
- B.在圆外
- C.在圆内
- D.以上都有可能
B
考点:直线与圆的位置关系.
分析:因为直线与圆相交,所以圆心到直线的距离小于半径,求出圆心坐标,利用两点间的距离公式求出圆心到该直线的距离小于圆的半径得到关于a和b的关系式,然后再根据点与圆心的距离与半径比较即可得到P的位置.
解:由圆x2+y2=1得到圆心坐标为(0,0),半径为1,因为直线与圆相交,
所以圆心到该直线的距离d=
<1,
即a2+b2>1即P点到原点的距离大于半径,所以P在圆外.
故选B
考点:直线与圆的位置关系.
分析:因为直线与圆相交,所以圆心到直线的距离小于半径,求出圆心坐标,利用两点间的距离公式求出圆心到该直线的距离小于圆的半径得到关于a和b的关系式,然后再根据点与圆心的距离与半径比较即可得到P的位置.
解:由圆x2+y2=1得到圆心坐标为(0,0),半径为1,因为直线与圆相交,
所以圆心到该直线的距离d=
即a2+b2>1即P点到原点的距离大于半径,所以P在圆外.
故选B
练习册系列答案
相关题目
若直线ax+by+1=0(a、b>0)过圆x2+y2+8x+2y+1=0的圆心,则
+
的最小值为( )
| 1 |
| a |
| 4 |
| b |
| A、8 | B、12 | C、16 | D、20 |