题目内容
设函数f(x)=|x-4|+|x-a|(a>1),且f(x)的最小值为3,若f(x)≤5,求x的取值范围.
解:因为|x-4|+|x-a|≥|(x-4)-(x-a)|=|a-4|,…(3分)
所以|a-4|=3,即a=7或a=1…(5分)
由a>1知a=7; …(6分)
∴f(x)=|x-4|+|x-7|≤5,
①若x≤4,f(x)=4-x+7-x=11-2x≤5,解得x≥3,故3≤x≤4;
②若4<x<7,f(x)=x-4+7-x=3,恒成立,故4<x<7;
③若x≥7,f(x)=x-4+x-7=2x-11≤5,解得x≤8,故7≤x≤8;
综上3≤x≤8,
故答案为:3≤x≤8. …(10分)
分析:利用不等式的性质对|x-4|+|x-a|进行放缩,求出其用a表示的最小值,因为f(x)的最小值为3,从而求出a值,把f(x)代入f(x)≤5,然后进行分类讨论求解.
点评:此题考查绝对值不等式的放缩问题及函数的恒成立问题,这类题目是高考的热点,难度不是很大,要注意不等号进行放缩的方向.
所以|a-4|=3,即a=7或a=1…(5分)
由a>1知a=7; …(6分)
∴f(x)=|x-4|+|x-7|≤5,
①若x≤4,f(x)=4-x+7-x=11-2x≤5,解得x≥3,故3≤x≤4;
②若4<x<7,f(x)=x-4+7-x=3,恒成立,故4<x<7;
③若x≥7,f(x)=x-4+x-7=2x-11≤5,解得x≤8,故7≤x≤8;
综上3≤x≤8,
故答案为:3≤x≤8. …(10分)
分析:利用不等式的性质对|x-4|+|x-a|进行放缩,求出其用a表示的最小值,因为f(x)的最小值为3,从而求出a值,把f(x)代入f(x)≤5,然后进行分类讨论求解.
点评:此题考查绝对值不等式的放缩问题及函数的恒成立问题,这类题目是高考的热点,难度不是很大,要注意不等号进行放缩的方向.
练习册系列答案
相关题目
设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是( )
| A、[-5,5] | ||||||||
B、[-
| ||||||||
C、[-
| ||||||||
D、[-
|