题目内容
设{an}是等比数列,Sn是{an}的前n项和,对任意正整数n,有an+2an+1+an+2=0,又a1=2,则S101=( )
| A.200 | B.2 | C.-2 | D.0 |
解析:设等比数列{an}的公比为q,
∵对任意正整数n,有an+2an+1+an+2=0,
∴an+2anq+anq2=0,
又an≠0,可得:1+2q+q2=0,
解得:q=-1,又a1=2,
则S101=
=2.
故选B
∵对任意正整数n,有an+2an+1+an+2=0,
∴an+2anq+anq2=0,
又an≠0,可得:1+2q+q2=0,
解得:q=-1,又a1=2,
则S101=
| 2×(1+1) |
| 1+1 |
故选B
练习册系列答案
相关题目