题目内容

已知{an}是等差数列,其前n项和为5n,{bn}是等比数列,且a1=b1=2,a2+b4=21,b4-S3=1.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)记cn=an•bn,求数列{cn}的前n项和Tn
(Ⅰ)设等差数列的公差为d,等比数列的首项为q,
∵a1=b1=2,a2+b4=21,b4-S3=1
2+d+2q3=21
2q3-(3×2+3d)=1

∴d=3,q=2
∴an=3n-1,bn=2n
(Ⅱ)cn=an•bn=(3n-1)•2n
∴Tn=2×21+5×22+…+(3n-1)•2n
∴2Tn=2×22+5×23+…+(3n-1)•2n+1
∴-Tn=2×21+3×22+…+3•2n-(3n-1)•2n+1=(4-3n)•2n+1-8
∴Tn=(3n-4)•2n+1+8.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网