题目内容
设是椭圆的两个焦点,为椭圆上的点,以为直径的圆经过,若,则椭圆的离心率为( )
A. B. C. D.
同时掷3枚硬币,至少有1枚正面向上的概率是
函数的最小值为 .
已知抛物线 的焦点为,准线为,经过上任意一点作抛物线的两条切线,切点分别为、.
(1)求证:以为直径的圆经过点;
(2)比较与 的大小 .
某工厂生产的、、三种不同型号的产品数量之比依次为,为研究这三种产品的质量,现用分层抽样的方法从该工厂生产的、、三种产品中抽出样本容量为的样本,若样本中型产品有件,则的值为 .
已知是平面向量,如果,那么与的数量积等于( )
已知椭圆:的离心率为,以其四个顶点为顶点的四边形的面积等于.
(1)求椭圆的标准方程;
(2)过原点且斜率不为0的直线与椭圆交于两点,是椭圆的右顶点,直线分别与轴交于点,问:以为直径的圆是否恒过轴上的定点?若存在,请求出该定点的坐标;若不存在,请说明理由.
下列说法正确的是( )
A.,“”是“”的必要不充分条件
B.“为真命题”是“为真命题”的必要不充分条件
C.命题“,使得”的否定是:“,”
D.命题:“,”,则是真命题
已知上的可导函数的图象如图所示,则不等式的解集为
A.
B.
C.
D.