题目内容
如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,AC⊥BC,D是棱AA1的中点,AA1=2AC=2BC=2a(a>0).
(1)证明:C1D⊥平面BDC;
(2)求三棱锥C-BC1D的体积.

(1)证明:C1D⊥平面BDC;
(2)求三棱锥C-BC1D的体积.
(1)证明:∵BC⊥CC1,BC⊥AC,AC∩CC1=C,∴BC⊥平面ACC1A1,
C1D?平面ACC1A1,∴BC⊥C1D,
A1C1=A1D=AD=AC,∴∠A1DC1=∠ADC=
,
∴∠C1DC=
,即C1D⊥DC,
又BD∩CD=C,∴C1D⊥平面BDC,
(2)三棱锥C-BC1D即三棱锥C1-BCD,由(1)知BC⊥CD,
CD=
a,BC=a
∴△BCD的面积S=
×BC×CD=
a2,
由(1)知,C1D是三棱锥C1-BCD底面BDC上的高,
∴体积V=
Sh=
×S×C1D=
×
a2×
a=
a3.
C1D?平面ACC1A1,∴BC⊥C1D,
A1C1=A1D=AD=AC,∴∠A1DC1=∠ADC=
| π |
| 4 |
∴∠C1DC=
| π |
| 2 |
又BD∩CD=C,∴C1D⊥平面BDC,
(2)三棱锥C-BC1D即三棱锥C1-BCD,由(1)知BC⊥CD,
CD=
| 2 |
∴△BCD的面积S=
| 1 |
| 2 |
| ||
| 2 |
由(1)知,C1D是三棱锥C1-BCD底面BDC上的高,
∴体积V=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| ||
| 2 |
| 2 |
| 1 |
| 3 |
练习册系列答案
相关题目