题目内容
已知向量
=(cos(-θ),sin(-θ)),
=(cos(
-θ),sin(
-θ)).
(1)求证:
⊥
.
(2)若存在不等于0的实数k和t,使
=
+(t2+3)
,
=(-k
+t
),满足
⊥
,试求此时
的最小值.
| a |
| b |
| π |
| 2 |
| π |
| 2 |
(1)求证:
| a |
| b |
(2)若存在不等于0的实数k和t,使
| x |
| a |
| b |
| y |
| a |
| b |
| x |
| y |
| k+t2 |
| t |
(1)证明∵
•
=cos(-θ)•cos(
-θ)+sin(-θ)•sin(
-θ)=sinθcosθ-sinθcosθ=0.
∴
⊥
.
(2)解由
⊥
得
•
=0,
即[
+(t2+3)
]•(-k
+t
)=0,
∴-k
2+(t3+3t)
2+[t2-k(t+3)]
•
=0,
∴-k|
|2+(t3+3t)|
|2=0.
又|
|2=1,|
|2=1,
∴-k+t3+3t=0,
∴k=t3+3t.
∴
=
=t2+t+3=(t+
)22+
.
故当t=-
时,
有最小值
.
| a |
| b |
| π |
| 2 |
| π |
| 2 |
∴
| a |
| b |
(2)解由
| x |
| y |
| x |
| y |
即[
| a |
| b |
| a |
| b |
∴-k
| a |
| b |
| a |
| b |
∴-k|
| a |
| b |
又|
| a |
| b |
∴-k+t3+3t=0,
∴k=t3+3t.
∴
| k+t2 |
| t |
| t3+t2+3t |
| t |
| 1 |
| 2 |
| 11 |
| 4 |
故当t=-
| 1 |
| 2 |
| k+t2 |
| t |
| 11 |
| 4 |
练习册系列答案
相关题目