题目内容

如果抛物线y=x2-2xsinθ+1的顶点在椭圆x2+4y2=1上,则这样的抛物线共有______条.
抛物线y=x2-2xsinθ+1可得顶点(sinθ,cos2θ)
代入椭圆方程得:
sin2θ+4cos4θ=1
4cos4θ=cos2θ
cos2θ=0或cos2θ=
1
4

对应的sinθ有4个不同的值,
所以,这样的抛物线共有4条
故答案为:4
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网