题目内容
在△中,,,,则 ;△的面积为_______.
,
【解析】由余弦定理,得,解得;由三角形的面积公式,得
.
考点:余弦定理、三角形的面积公式.
已知等差数列中,前10项的和等于前5项的和.若则( )
.10 .9 .8 .2
由直线上的点向圆引切线,则切线长的最小值为 .
已知抛物线的方程为,则其焦点到准线的距离为________.
下列函数中,既是奇函数,又在区间上为增函数的是
(A) (B) (C) (D)
已知函数若,则实数的取值范围是
(A) (B)
(C) (D)
(本小题满分10分)如图,直角梯形中,,,平面平面,为等边三角形,分别是的中点,.
(1)证明:;
(2)证明:平面;
(3)若,求几何体的体积.
将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( )
已知,且,则M的值是
A.20 B. C. D.400