题目内容

y=x3在点P处切线的斜率为3,则点P的坐标为
(-1,-1),(1,1)
(-1,-1),(1,1)
分析:欲求当k=3时的P点坐标,只须先利用导数求出在切点处的导函数值,再结合导数的几何意义即可求出切线的斜率,建立方程,解之即可求出切点的坐标.
解答:解:由题意可知,y=x3
则 y′=3x2
曲线y=x3在点P(x,y)处的切线斜率k=y′(x)=3,
∴3x2=3,x=±1,
∴P点坐标为(1,1)或(-1,-1)
故答案为:(-1,-1),(1,1)
点评:本题主要考查了利用导数研究曲线上某点切线方程,考查运算求解能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网