题目内容
(2013•长春一模)数列{an}的前n项和是Sn,且Sn+
an=1.
(1)求数列{an}的通项公式;
(2)记bn=log3
,数列{
}的前n项和为Tn,证明:Tn<
.
| 1 |
| 2 |
(1)求数列{an}的通项公式;
(2)记bn=log3
| ||
| 4 |
| 1 |
| bn•bn+2 |
| 3 |
| 16 |
分析:(1)由Sn+
an=1,先分别令n=1,2,3,求出a1=
,a2=
,a3=
.由此猜想an=
.再用数学归纳法证明.
(2)由an=
,知bn=log3
=log33-2n=-2n,故
=
=
=
(
-
),由此利用裂项求和法能够证明数列{
}的前n项和Tn<
.
| 1 |
| 2 |
| 2 |
| 3 |
| 2 |
| 9 |
| 2 |
| 27 |
| 2 |
| 3n |
(2)由an=
| 2 |
| 3n |
| ||
| 4 |
| 1 |
| bn•bn+2 |
| 1 |
| (-2n)•[-2(n+2)] |
| 1 |
| 4n(n+2) |
| 1 |
| 8 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| bn•bn+2 |
| 3 |
| 16 |
解答:解:(1)∵Sn+
an=1,
∴a1+
a1=1,解得a1=
.
+a2+
a2=1,解得a2=
,
+
+a3+
a3=1,解得a3=
.
由此猜想an=
.
用数学归纳法证明:
①当n=1时,a1=
,成立;
②假设n=k时成立,即ak=
,
则当n=k+1时,
+
+…+
+ak+1+
ak+1 =1,
∴
ak+1=1-
=
,解得ak+1=
,也成立.
∴an=
.
(2)∵an=
,
∴bn=log3
=log33-2n=-2n,
∴
=
=
=
(
-
),
∵数列{
}的前n项和为Tn,
∴Tn=
[(1-
)+(
-
)+(
-
)+…+(
-
)+(
-
)+(
-
)]
=
(1+
-
-
)
=
-
-
<
.
故Tn<
.
| 1 |
| 2 |
∴a1+
| 1 |
| 2 |
| 2 |
| 3 |
| 2 |
| 3 |
| 1 |
| 2 |
| 2 |
| 9 |
| 2 |
| 3 |
| 2 |
| 9 |
| 1 |
| 2 |
| 2 |
| 27 |
由此猜想an=
| 2 |
| 3n |
用数学归纳法证明:
①当n=1时,a1=
| 2 |
| 3 |
②假设n=k时成立,即ak=
| 2 |
| 3k |
则当n=k+1时,
| 2 |
| 3 |
| 2 |
| 32 |
| 2 |
| 3k |
| 1 |
| 2 |
∴
| 3 |
| 2 |
| ||||
1-
|
| 1 |
| 3k |
| 2 |
| 3k+1 |
∴an=
| 2 |
| 3n |
(2)∵an=
| 2 |
| 3n |
∴bn=log3
| ||
| 4 |
∴
| 1 |
| bn•bn+2 |
| 1 |
| (-2n)•[-2(n+2)] |
| 1 |
| 4n(n+2) |
| 1 |
| 8 |
| 1 |
| n |
| 1 |
| n+2 |
∵数列{
| 1 |
| bn•bn+2 |
∴Tn=
| 1 |
| 8 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-2 |
| 1 |
| n |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 8 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 3 |
| 16 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 16 |
故Tn<
| 3 |
| 16 |
点评:本题考查数列的通项公式的求法,考查不等式的证明.解题时要认真审题,注意数学归纳法和裂项求和法的合理运用.
练习册系列答案
相关题目