题目内容

7.设整数a,b,c与实数r满足:ar2+br+c=0,ac≠0,证明:$\sqrt{{r}^{2}+{c}^{2}}$是无理数.

分析 由条件得b2-4ac≥0,设r=$\frac{-b+m}{2a}$,其中m2=b2-4ac,m≠±b;假设$\sqrt{{r}^{2}+{c}^{2}}$是有理数q,记s=2aq∈Q,先判断出m是无理数,从而可推出b=0;从而化简可得s2+1=m2+4a2c2+1=(2ac-1)2,故s=0,与s≠0矛盾;从而证明.

解答 证明:由条件得,b2-4ac≥0,设r=$\frac{-b+m}{2a}$,其中m2=b2-4ac,
∵ac≠0,∴m≠±b;
假设$\sqrt{{r}^{2}+{c}^{2}}$是有理数q,记s=2aq∈Q,
则s2=4a2q2=4a2(r2+c2)=(m-b)2+4a2c2>0,
若m∈Z,则s∈Z,
而4s2=4(m-b)2+(4ac)2=4(m-b)2+(b2-m22=(m-b)2(4+(m+b)2),
故4+(m+b)2是平方数,
故m+b=0,与m≠±b相矛盾;
故m∉Z,不妨设m=$\frac{p}{q}$(p与q互质);
m2=$\frac{{p}^{2}}{{q}^{2}}$∉Z,而b2-4ac∈Z,
故m2=b2-4ac不成立;故矛盾;
故m是无理数,
又由s2=4a2q2=4a2(r2+c2)=(m-b)2+4a2c2>0知,
2mb=m2+b2+4a2c2-s2∈Q,
故b=0;
故s2+1=m2+4a2c2+1=(2ac-1)2
故s=0,故与s≠0矛盾;
故$\sqrt{{r}^{2}+{c}^{2}}$是无理数.

点评 本题考查了反证法的应用,关鍵在于构造s=2aq.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网