ÌâÄ¿ÄÚÈÝ

0£¼¦Á£¼1,0£¼¦Â£¼1£¬ÊýÁÐ{xn},{yn}ÓÉÒÔÏÂÌõ¼þÈ·¶¨£º(x1,y1)=(2,1),(xn+1,yn+1)=(¦Áxn+1-¦Á,¦Âyn+2-2¦Â), (n=1,2,3,¡­)Íê³ÉÒÔÏÂÎÊÌâ.

(1)ÇóÊýÁÐ{xn}Óë{yn}µÄͨÏ

(2)Çóxn£¬yn£»

(3)ÊýÁÐ{xn},{yn}ÊÇÓÐÏÞÊýÁÐʱ£¬µ±¦Á=¦Âʱ£¬Çóµã(xn,yn)µÄ´æÔÚ·¶Î§£»

(4)ÊýÁÐ{xn},{yn}ÊÇÓÐÏÞÊýÁÐʱ£¬µ±¦Â¡Ý¦Á2ʱ£¬½«µã(xn,yn)µÄ´æÔÚ·¶Î§ÓÃͼÐαíʾ³öÀ´.

½â£º(1)ÓÉÌâÉèµÃ¡à

¡à{xn-1}Óë{yn-2}Êǹ«±È·Ö±ðΪ¦Á,¦ÂµÄµÈ±ÈÊýÁÐ.

¡àÓÖ

¡àn=1ʱҲ³ÉÁ¢.                                                

(2)¡ß0£¼¦Á£¼1,0£¼¦Â£¼1,¡àxn=1,yn=2.                                      

(3)(x1,y1)=(2,1),2¡Ük¡Ünʱ£¬ÓɦÁ=¦Â,xk=1+¦Ák-1,yk=2-¦Ák-1.

ÏûÈ¥¦Ák-1µÃxk+yk=3,ÓÉk¡Ý2¼°0£¼¦Á£¼1,

¡àµã(xn,yn)ÔÚÏß¶Îx+y=3(1£¼x¡Ü2)ÉÏ.                                            

(4)(x1,y1)=(2,1),2¡Ük¡Ünʱ,k-1£¾0,

ÓÉ(2)µÃ1£¼xk£¼2,1£¼yk£¼2,ÓÖ(¦Ák-1)2=(xk-1)2,

¡à(¦Á2)k-1=(xk-1)2.¡ß¦Â¡Ý¦Á2,¡à¦Âk-1¡Ý(¦Á2)k-1,¼´2-yk¡Ý(xk-1)2.

¡àyk¡Ü-(xk-1)2+2,¡àµã(xn,yn)ËùÔڵķ¶Î§ÊÇy¡Ü-(x-1)2+2ÇÒ1£¼x£¼2,1£¼y£¼2¼°µã(2£¬1)£¬ÆäͼÐÎΪͼÖÐÒõÓ°²¿·Ö.

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø