题目内容
对于函数f(x)=
,设f1(x)=f(x),f2(x)=f[f1(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)],(n∈N*).
(1)写出f2(x),f3(x),f4(x),f5(x)的表达式;
(2)根据(I)的结论,请你猜想并写出f4n-1(x)的表达式;
(3)若x∈C,求方程f2010(x)=x的解集.
| x-1 |
| x+1 |
(1)写出f2(x),f3(x),f4(x),f5(x)的表达式;
(2)根据(I)的结论,请你猜想并写出f4n-1(x)的表达式;
(3)若x∈C,求方程f2010(x)=x的解集.
解(1)∵f(x)=1-
∴f2(x)=1-
=1-
=-
,f3(x)=
,
f4(x)=x,f5(x)=f(x)=
;
(2)根据(I)知:fn(x)是以4为周期;
∴f4n-1(x)=f3(x)=
;
(3)∵fn(x)是以4为周期,∴f2010(x)=f2(x)=-
∴-
=x,∴x2=-1,
∴原方程的解集为{i,-i}.
| 2 |
| x+1 |
| 2 |
| f(x)+1 |
| x+1 |
| x |
| 1 |
| x |
| 1+x |
| 1-x |
f4(x)=x,f5(x)=f(x)=
| x-1 |
| x+1 |
(2)根据(I)知:fn(x)是以4为周期;
∴f4n-1(x)=f3(x)=
| 1+x |
| 1-x |
(3)∵fn(x)是以4为周期,∴f2010(x)=f2(x)=-
| 1 |
| x |
∴-
| 1 |
| x |
∴原方程的解集为{i,-i}.
练习册系列答案
相关题目