题目内容
(2010•怀柔区模拟)函数f(x)对任意x∈R都有f(x)+f(1-x)=
.
(1)求f(
)的值;
(2)数列{an}满足:an=f(0)+f(
)+f(
)+…+f(
)+f(1),数列{an}是等差数列吗?请给予证明;
(3)令bn=
,Tn=b12+b22+b32+…+bn2,Sn=32-
,试比较Tn与Sn的大小.
| 1 |
| 2 |
(1)求f(
| 1 |
| 2 |
(2)数列{an}满足:an=f(0)+f(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
(3)令bn=
| 4 |
| 4an-1 |
| 16 |
| n |
分析:(1)由已知中f(x)+f(1-x)=
,令x=
,可得f(
)的值;
(2)令x=
,可得f(
)+f(
)=
,利用倒序相加法,可得答案.
(3)由bn=
=
可得:Tn=c12+b22…+bn2=16(1+
+
+…+
)≤16[1+
+
+…+
],利用裂项相消法,可得结论.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(2)令x=
| 1 |
| n |
| 1 |
| n |
| n-1 |
| n |
| 1 |
| 2 |
(3)由bn=
| 4 |
| 4a2-1 |
| 4 |
| n |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n(n-1) |
解答:解:(1)因为f(
)+f(1-
)=f(
)+f(
)=
.
所以f(
)=
.(2分)
(2)令x=
,得f(
)+f(1-
)=
,
即f(
)+f(
)=
.(4分)
an=f(0)+f(
)+…+f(
)+f(1),
又an=f(1)+f(
)+…+f(
)+f(0)
两式相加:
2an=[f(0)+f(1)]+[f(
)+f(
)]+…
+[f(1)+f(0)]=
(7分)
所以an=
,n∈N*,又an+1-an=
-
=
.
故数列{an}是等差数列.(9分)
(3)bn=
=
,
∴Tn=c12+b22…+bn2=16(1+
+
+…+
)
≤16[1+
+
+…+
](12分)
=16[1+(1-
)+(
-
)+…(
-
)]
=16(2-
)=32-
=Sn,
所以Tn≤Sn(14分)
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
所以f(
| 1 |
| 2 |
| 1 |
| 4 |
(2)令x=
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| 2 |
即f(
| 1 |
| n |
| n-1 |
| n |
| 1 |
| 2 |
an=f(0)+f(
| 1 |
| n |
| n-1 |
| n |
又an=f(1)+f(
| n-1 |
| n |
| 1 |
| n |
两式相加:
2an=[f(0)+f(1)]+[f(
| 1 |
| n |
| n-1 |
| n |
+[f(1)+f(0)]=
| n+1 |
| 2 |
所以an=
| n+1 |
| 4 |
| n+1+1 |
| 4 |
| n+1 |
| 4 |
| 1 |
| 4 |
故数列{an}是等差数列.(9分)
(3)bn=
| 4 |
| 4a2-1 |
| 4 |
| n |
∴Tn=c12+b22…+bn2=16(1+
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
≤16[1+
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n(n-1) |
=16[1+(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
=16(2-
| 1 |
| n |
| 16 |
| n |
所以Tn≤Sn(14分)
点评:本题考查的知识点是抽象函数求值,数列求和,熟练掌握数列求和的各种方法及适用范围是解答的关键.
练习册系列答案
相关题目