题目内容

顶点在原点,对称轴是y轴,且焦点在直线3x-4y-24=0上的抛物线的标准方程是
x2=-24y
x2=-24y
分析:依题意,抛物线的标准方程是x2=2my,直线3x-4y-24=0中,令x=0可求得抛物线的焦点坐标,从而求得答案.
解答:解:∵抛物线的顶点在原点,对称轴是y轴,
∴抛物线的标准方程为x2=2my,
∵其焦点在直线3x-4y-24=0上,
∴令x=0得y=-6,
∴焦点F(0,-6).
∴m=-12.
∴抛物线的标准方程是x2=-24y.
故答案为:x2=-24y.
点评:本题考查抛物线的标准方程,确定抛物线的标准方程的类型及其焦点坐标是关键,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网