题目内容
有两枚均匀的硬币和一枚不均匀的硬币,其中不均匀的硬币抛掷后出现正面的概率为
.小华先抛掷这三枚硬币,然后小红再抛掷这三枚硬币.
(1)求小华抛得一个正面两个反面且小红抛得两个正面一个反面的概率;
(2)若用
表示小华抛得正面的个数,求
的分布列和数学期望;
(3)求小华和小红抛得正面个数相同(包括0个)的概率.
解:(1)设A表示事件“小华抛得一个正面两个反面”,
B表示事件“小红抛得两个正面一个反面”,
则P(A)=
,
P(B)=
,
则小华抛得一个正面两个反面且小红抛得两个正面一个反面的概率为
P(AB)= P(A)P(B)=
.
(2)由题意
的取值为0,1,2,3,且
;
;
;
.
所求随机变量
的分布列为
|
| 0 | 1 | 2 | 3 |
| P |
|
|
|
|
数学期望
.
(3)设C表示事件“小华和小红抛得正面个数相同”,
则所求概率为![]()
.
所以“小华和小红抛得正面个数相同”的概率为
.
练习册系列答案
相关题目