题目内容
若直线和直线关于点对称,求的值.
由,即,两直线关于点对称,说明两直线平行,,在上取点,这点关于的对称点为,满足,得,所以.
(1) 以直角坐标系的原点为极点,轴的正半轴为极轴。已知点的直角坐标为(1,-5),点的极坐标为若直线过点,且倾斜角为,圆以为圆心、为半径。(I)求直线的参数方程和圆的极坐标方程;(II)试判定直线和圆的位置关系.(2)把曲线先进行横坐标缩为原来的一半,纵坐标保持不变的伸缩变换,再做关于轴的反射变换变为曲线,求曲线的方程.(3)关于的一元二次方程对任意无实根,求实数的取值范围.
已知椭圆具有性质:若是椭圆:且为常数上关于原点对称的两点,点是椭圆上的任意一点,若直线和的斜率都存在,并分别记为,,那么与之积是与点位置无关的定值.
试对双曲线且为常数写出类似的性质,并加以证明.
2010年春节,又是情人节.这是几十年难遇的“双节”.很多对“新人”赶在这一天申领结婚证.若新郎和新娘的年龄记为(y,x).试考虑以下y关于x的回归问题:
(1)如果每个新郎和新娘都同岁,则穿过这些点的回归直线的斜率和截距等于什么?
(2)如果每个新郎都比新娘大5岁,则穿过这些点的回归直线的斜率和截距等于什么?
(3)如果每个新郎都比新娘大10%,则穿过这些点的回归直线的斜率和截距等于什么?
(4)若由一些数据求得回归直线方程为=1.118x-1.091,则由此可得出关于新郎、新娘年龄的什么结论?
(1) 以直角坐标系的原点为极点,轴的正半轴为极轴。已知点的直角坐标为(1,-5),点的极坐标为若直线过点,且倾斜角为,圆以为圆心、为半径。(I)求直线的参数方程和圆的极坐标方程;(II)试判定直线和圆的位置关系.
(2)把曲线先进行横坐标缩为原来的一半,纵坐标保持不变的伸缩变换,再做关于轴的反射变换变为曲线,求曲线的方程.
(3)关于的一元二次方程对任意无实根,求实数的取值范围.
本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)(本小题满分7分)选修4-4:坐标系与参数方程
以直角坐标系的原点为极点,轴的正半轴为极轴。已知点的直角坐标为(1,-5),点的极坐标为若直线过点,且倾斜角为,圆以为圆心、为半径。
(I)求直线的参数方程和圆的极坐标方程;
(II)试判定直线和圆的位置关系.
(2)(本小题满分7分)选修4-4:矩阵与变换
把曲线先进行横坐标缩为原来的一半,纵坐标保持不变的伸缩变换,再做关于轴的反射变换变为曲线,求曲线的方程.
(3)(本小题满分7分)选修4-5:不等式选讲
关于的一元二次方程对任意无实根,求实数的取值范围.