题目内容
4.| A. | 1 | B. | 2 | C. | 1.5 | D. | 2.5 |
分析 连结OC,过E作EF⊥OC于F,连接OE,由已知条件推导出四边形CDEF是矩形,并求出DC和AD的长,由此利用勾股定理能求出BC的长
解答
解:连结OC,过E作EF⊥OC于F,连接OE,
∵AB为半圆O的直径,AB=4,C为半圆上一点,
过点C作半圆的切线CD,过点A作AD⊥CD于D,
∴四边形CDEF是矩形,
∵DE=1,
∴CF=DE=1,∴OF=OC-1=$\frac{1}{2}$AB-1=1,
∴CD=EF=$\sqrt{3}$,
∵CD2=DE•DA,∴DA=3,
∴AC2=CD2+AD2=12,
∴BC2=AB2-AC2=16-12=4,
∴BC=2.
故选:B.
点评 本题考查与圆有关的线段长的求法,解题时要注意切害割线定理和勾股定理的合理运用,是中档题.
练习册系列答案
相关题目
16.已知F1,F2分别为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,P为以双曲线的焦距2c为直径的圆与双曲线的一个交点,若△PF1F2面积的最小值为$\frac{1}{2}$a2,则双曲线的离心率e的取值范围是( )
| A. | (1,+∞) | B. | (1,$\frac{\sqrt{6}}{2}$] | C. | [$\frac{\sqrt{6}}{2}$,+∞) | D. | (1,2] |
13.θ∈[0,π],$cosθ=\frac{3}{4}$,则$tan\frac{θ}{2}$=( )
| A. | $\sqrt{7}$ | B. | $\frac{{\sqrt{7}}}{7}$ | C. | 7 | D. | $\frac{1}{7}$ |
14.抛物线$y=\frac{1}{8}{x^2}$的焦点到双曲线${y^2}-\frac{x^2}{3}=1$的一条渐近线的距离为( )
| A. | 1 | B. | 2 | C. | $\sqrt{3}$ | D. | $2\sqrt{3}$ |