题目内容
已知数列{
-(
)n}是等差数列,公差为2,a1,=11,an+1=λan+bn.
(I)用λ表示bn;
(II)若
=4,且κ≥3,求λ的值;
(III)在(II)条件下,求数列{an}的前n项和.
| an |
| λn |
| 3 |
| λ |
(I)用λ表示bn;
(II)若
| lim |
| n→∞ |
| bn+1 |
| bn |
(III)在(II)条件下,求数列{an}的前n项和.
(I)因为数列{
-(
)n}是等差数列,公差为2所以
-
=
-
+2?an+1=λ•an+3n+1+2λn+1-λ•3n
∴bn=3n+1+2λn+1-λ•3n=2λn+1+3n(3-λ)??
(II)又
=
当λ=3时,
═λ=3,
与已知矛盾,
∴λ≠3
当λ>3时,
=
=λ=4
∴λ=4
(III)由已知当λ=4时,
=
=
+2(n-1)=2n?an=2n•4n+3n
令An=2×4+4×42+6×43++2n×4n=
+
×4n+1Bn=3+32+33++3n=
-
∴数列{an}的前n项和Sn=An+Bn=
+
×4n+1+
-
=-
+
+
×4n+1
| an |
| λn |
| 3 |
| λ |
| an+1 |
| λn+1 |
| 3n+1 |
| λn+1 |
| an |
| λn |
| 3n |
| λn |
∴bn=3n+1+2λn+1-λ•3n=2λn+1+3n(3-λ)??
(II)又
| lim |
| n→∞ |
| bn+1 |
| bn |
| lim |
| n→∞ |
| 2λn+2+3n+1(3-λ) |
| 2λn+1+3n(3-λ) |
| lim |
| n→∞ |
| bn+1 |
| bn |
与已知矛盾,
∴λ≠3
当λ>3时,
| lim |
| n→∞ |
| bn+1 |
| bn |
| lim |
| n→∞ |
2λ+(3-λ)(
| ||||
2+
|
∴λ=4
(III)由已知当λ=4时,
| an |
| 4n |
| 3n |
| 4n |
| 11-3 |
| 4 |
令An=2×4+4×42+6×43++2n×4n=
| 8 |
| 9 |
| 6n-2 |
| 9 |
| 3n+1 |
| 2 |
| 3 |
| 2 |
∴数列{an}的前n项和Sn=An+Bn=
| 8 |
| 9 |
| 6n-2 |
| 9 |
| 3n+1 |
| 2 |
| 3 |
| 2 |
| 11 |
| 18 |
| 3n+1 |
| 2 |
| 6n-2 |
| 9 |
练习册系列答案
相关题目