题目内容

已知数列{an-n}是等比数列,且满足a1=2,an+1=3an-2n+1,n∈N*.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)求数列{an}的前n项和Sn
分析:(Ⅰ)由题设知
an+1-(n+1)
an-n
=
3an-2n+1-(n+1)
an-n
=
3an-3n
an-n
=3
,由此可知an-n=(2-1)•3n-1?an=3n-1+n(7分)
(Ⅱ)由题设条件知数列{an}的前n项和Sn=(30+3+32++3n-1)+(1+2+3++n)=
3n+n2-1
2
解答:解:(Ⅰ)
an+1-(n+1)
an-n
=
3an-2n+1-(n+1)
an-n
=
3an-3n
an-n
=3
是常数(3分)
由已知数列{an-n}是等比数列
所以an-n=(2-1)•3n-1?an=3n-1+n(7分)
(Ⅱ)所以数列{an}的前n项和
Sn=(30+3+32++3n-1)+(1+2+3++n)=
3n+n2-1
2
(13分)
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网