题目内容
已知Sn是数列{an}的前n项和,且Sn=
(an-1)(n∈N+).
(1)求a1的值,并求数列{an}的通项公式;
(2)设bn=
(n∈N+),数列{bn}的前n项和为Tn,求证:Tn+
(n∈N+)为定值.
| 3 |
| 2 |
(1)求a1的值,并求数列{an}的通项公式;
(2)设bn=
| an |
| (an+1)(an+1+1) |
| 1 |
| 6an+2 |
分析:(1)利用公式an=
,由Sn=
(an-1)(n∈N+),能求出a1的值,并能求出数列{an}的通项公式;
(2)由an=3n,推导出bn=
(
-
),由此利用裂项求和法能够证明:Tn+
(n∈N+)为定值.
|
| 3 |
| 2 |
(2)由an=3n,推导出bn=
| 1 |
| 2 |
| 1 |
| 3n+1 |
| 1 |
| 3n+1+1 |
| 1 |
| 6an+2 |
解答:解:(1)∵Sn=
(an-1)(n∈N+),
∴当n=1时,a1=S1=
(a1-1),
解得a1=3.
an=Sn-Sn-1=
(an-1)-
(an-1-1),
整理,得an=3an-1,
∴数列{an}是首项为3,公比为3的等比数列,
∴an=3n.
(2)∵an=3n,
∴bn=
=
=
(
-
)
∴Tn=
(
-
+
-
+…+
-
)
=
(
-
)=
-
,
∴Tn+
=
-
+
=
,
∴Tn+
(n∈N+)为定值.
| 3 |
| 2 |
∴当n=1时,a1=S1=
| 3 |
| 2 |
解得a1=3.
an=Sn-Sn-1=
| 3 |
| 2 |
| 3 |
| 2 |
整理,得an=3an-1,
∴数列{an}是首项为3,公比为3的等比数列,
∴an=3n.
(2)∵an=3n,
∴bn=
| an |
| (an+1)(an+1+1) |
| 3n |
| (3n+1)(3n+1+1) |
| 1 |
| 2 |
| 1 |
| 3n+1 |
| 1 |
| 3n+1+1 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3+1 |
| 1 |
| 32+1 |
| 1 |
| 32+1 |
| 1 |
| 33+1 |
| 1 |
| 3n+1 |
| 1 |
| 3n+1+1 |
=
| 1 |
| 2 |
| 1 |
| 3+1 |
| 1 |
| 3n+1+1 |
| 1 |
| 8 |
| 1 |
| 6×3n+2 |
∴Tn+
| 1 |
| 6an+2 |
| 1 |
| 8 |
| 1 |
| 6×3n+2 |
| 1 |
| 6×3n+2 |
| 1 |
| 8 |
∴Tn+
| 1 |
| 6an+2 |
点评:本题考查数列的通项公式和前n项和公式的求法,解题时要注意构造法和裂项求和法的合理运用.
练习册系列答案
相关题目