题目内容

已知Sn是数列{an}的前n项和,且Sn=
3
2
(an-1)(n∈N+)

(1)求a1的值,并求数列{an}的通项公式;
(2)设bn=
an
(an+1)(an+1+1)
(n∈N+)
,数列{bn}的前n项和为Tn,求证:Tn+
1
6an+2
(n∈N+)
为定值.
分析:(1)利用公式an=
S1,n=1
Sn-Sn-1,n≥2
,由Sn=
3
2
(an-1)(n∈N+)
,能求出a1的值,并能求出数列{an}的通项公式;
(2)由an=3n,推导出bn=
1
2
(
1
3n+1
-
1
3n+1+1
)
,由此利用裂项求和法能够证明:Tn+
1
6an+2
(n∈N+)
为定值.
解答:解:(1)∵Sn=
3
2
(an-1)(n∈N+)

∴当n=1时,a1=S1=
3
2
(a1-1)

解得a1=3.
an=Sn-Sn-1=
3
2
(an-1)-
3
2
(an-1-1)

整理,得an=3an-1
∴数列{an}是首项为3,公比为3的等比数列,
∴an=3n
(2)∵an=3n
bn=
an
(an+1)(an+1+1)
=
3n
(3n+1)(3n+1+1)
=
1
2
(
1
3n+1
-
1
3n+1+1
)

Tn=
1
2
(
1
3+1
-
1
32+1
+
1
32+1
-
1
33+1
+…+
1
3n+1
-
1
3n+1+1
)

=
1
2
(
1
3+1
-
1
3n+1+1
)=
1
8
-
1
3n+2

Tn+
1
6an+2
=
1
8
-
1
3n+2
+
1
3n+2
=
1
8

Tn+
1
6an+2
(n∈N+)
为定值.
点评:本题考查数列的通项公式和前n项和公式的求法,解题时要注意构造法和裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网